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[1] A new code for solving radiation belt diffusion equations has been developed and
applied to the 2-D bounce-averaged energy pitch angle quasi-linear diffusion equation.
The code uses Monte Carlo methods to solve 1t6 stochastic differential equations
(SDEs) which are mathematically equivalent to radiation belt diffusion equations. We
show that our SDE code solves the diffusion equation with off-diagonal diffusion
coeflicients in contrast to standard finite difference codes which are generally unstable
when off-diagonal diffusion coefficients are included. Our results are in excellent
agreement with previous results, We have also investigated effects of assuming purely
parallel propagating electromagnetic waves when calculating the diffusion coefficients and
find that this assumption leads to errors of more than an order of magnitude in flux at
some equatorial pitch angles for the specific chorus wave model we use. Further work is
needed to investigate the sensitivity of our results to the wave model parameters.
Generalization of the method to 3-D is straightforward, thus making this method a very
promising new way to investigate the relative roles of pitch angle, energy, and radial

diffusion in radiation belt dynamics.

Citation: Tao, X., A. A. Chan, J. M. Albert, and J. A. Miller (2008), Stochaslic modcling of multidimensional diffusion in the
radiation belts, J. Geophys. Res., 113, A07212, doi:10.1029/2007JA012985.

1. Introduction

[2] Thc Earth’s outer radiation belt is very dynamic, and
electron fluxes can vary by several orders of magnitude
during storm times, which makes it very hazardous
to spacecrafts and astronauts [e.g., Baker et al., 1997].
Quasi-linear diffusion theory has bcen used to evaluate
dynamic changes of particle fluxes in the radiation belts
[Albert, 2004; Albert and Young, 2005; Horne and Thorne,
2003; Horne et al., 2003]. Using the quasi-linear diffusion
theory to model radiation belt dynamics requires at least two
kinds of computations: numerical solution of a diffusion
cquation, which is a one-dimensional or multidimensional
Fokker-Planck equation, depending on diffusion processes
we are interested in, and calculation of diffusion coefficients.

[3] Albert [2004] has shown that numerical problems
arise when applying standard finite differcncc mcthods to
pitch anglc and encrgy diffusion equations becausc of
rapidly varying off-diagonal diffusion coefficicnts. Albert
and Young [2005] developcd a method for the 2-D diffusion
cquation which diagonalizes the diffusion tcnsor by trans-
forming to a new set of coordinates and solves the trans-
formed equation by simple finite difference methods. In this
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work we introduce another mcthod which uscs probabilistic
representations of solutions of Fokkcr-Planck cquations
[Freidlin, 1985; Costantini et al., 1998] via stochastic
differential cquations (SDEs), and we develop a 2-D codc
for solving pitch angle and energy diffusion equations.
Compared with finite difference methods, the SDE mcthod
has three main advantages. First, thc SDE method is very
efficient when solutions on only a small number of points
are desired, particularly when applicd to high-dimensional
problems, and it is easy to code and parallclizc, with
parallelization efficiency close to one. Second, with the
SDE method, wc are able to handle complicated boundary
geometry other than constant-coordinatc boundarics (sce
section 2.2). Third, generalization of thc SDE mcthod to
higher dimensions is straightforward, and we expect the
mcthod to be applicable to general 3-D radiation belt
diffusion equations. For morc applications of similar
methods using rclations betwecn Fokker-Planck cquations
and SDEs, see, e.g., Zhang [1999], Albright et al. [2003],
Alanko-Huotari et al. [2007], Qin et al. [2005], and Yamada
et al. [1998].

[4] Besides solving diffusion equations, correctly calcu-
lating quasi-lincar diffusion coefficients is also important
for numerical modeling of the radiation belt dynamics using
quasi-linear theory. Albert [2005] and Glauert and Horne
[2005] have shown full calculations of diffusion coefficients
for cyclotron resonant wave-particle interactions, where up
to n = = 5 resonances are included. However, the full
calculation of diffusion coefficients is very time consuming.
Summers [2005] derived simplified formulae for cocffi-
cients with a parallel propagation approximation (and hence
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only the n = —1 resonance is included [A4/bert, 2007]), and
the computation becomes much faster. Shprits et al. [2006]
calculated bounce-averaged pitch angle and energy diffu-
sion eoeffieients D, o490 and D,, with the parallel propaga-
tion approximation for £ < 1 MeV partieles and comparcd
them with fully calculated coefficients from the PADIE code
of Glauert and Horne [2005]. They concluded that coef-
ficients for field-aligned waves are elose to cocfficients for
waves with mildly oblique wave normal angle distribution
from the PADIE code. However, using the wave model
from Horne et al. [2005], we compute particle fluxes and
wc show that for £ = 2 MeV electrons, Dyg,0 and D,
calculated with the parallel propagation approximation
producc flux differenees of about 1 order of magnitude at
some pitch angles, compared to using fully calculated
cocfficicnts. Furthermore, we show that by including off-
diagonal terms in the ealeulation, the parallel propagation
approximation also produces large errors in fluxes for both
E = 0.5 MeV and 2 MeV electrons at small pitch angles.

[s] The remainder of this paper is organized as follows.
The SDE method and its numerical implementation are
introduccd 1n section 2. In section 3 we present the
application of the SDE method to a bounce-averaged
radiation belt pitch angle and energy diffusion equation.
After deseribing the implementation of the SDE method for
the pitch angle energy equation (seetion 3.1), we show
eomparisons between results from the SDE method and the
Albert and Young [2005] transformation method (seetion 3.2).
Then fluxes ealeulated from diffusion eoefficients with the
parallel propagation approximation [Summers, 2005] are
compared with fluxes eomputed with coefficients from full
quasi-linear theory [Albert, 2005] (seetion 3.3). We summarize
our work and diseuss future work in section 4.

2. SDE Method

[6] Our SDE code is based on mathematical results which
show that solutions of diffusion equations can be obtained
using an equivalent stochastic proeess. Thus, we first give a
description of a stochastic process using [td stochastic
differential equations in section 2.1. Then we show how
these lead to probabilistie representations of solutions of
diffusion cquations in section 2.2.

2.1. Ito Stochastic Differential Equations

[7] Stochastic differential equations (SDEs) are used to
deseribe stochastie proeesses. They differ from ordinary
differential equations by having terms involving random
variablcs [Gardiner, 1985; Freidlin, 1985]. A general
m-dimensional SDE with an n-dimensional Wiener process
is written as

dX(t) = b(X.t)dt + o (X, t) dW(t), (1)

where the m vector X represents an m-dimensional
stochastic process (X, Xa,. .., X,»). Throughout this work,
stochastie proeesses are indieated by uppercase characters,
and their values at a given time are represented by
corresponding lowercase echaraeters. The n veetor W is
an n-dimensional Wiener process (W,, W,, ..., W,) and
dW(t)=W(t+ dt) — W(1) [Gardiner, 1985]; an inerement of
a onc-dimensional Wiener process is proportional to a
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Gaussian random number. The m vector b and thc m x n
matrix o are coefficients that determine the values of X(¢), they
will be directly related to the coefficients of a corresponding
diffusion equation in section 2.2. Stepping equation (1) in time
gencrates a random walk trajectory through X space.

[8] Note that SDEs may be formulated using two main
mathcmatical methods: the It6 method and the Stratonovich
method [Gardiner, 1985]. In this work we use It6 SDEs
because thcy are directly related to diffusion equations of
interest for the radiation belts and they are mathcmatically
more eonvenient [Oksendal, 1992; Freidlin, 1985; Costantini
et al., 1998].

2.2. Probabilistic Representation of Solutions of
Diffusion Equations

[s] To solve a diffusion cquation using SDEs, wc can first
write the diffusion equation in Fokker-Planck form and thcn
obtain equivalent “time-forward” SDEs from the diffusion
equation. Thcse time-forward SDEs can then be used to
simulate particle trajectorics using a Monte Carlo technique,
and the distribution of particles at any given time ean be
obtained by binning partieles in phase space. This timc-
forward SDE method is presented in Appendix A to show
local effects of off-diagonal terms on the distribution of
particles. Alternatively, in this seetion we present a “time-
backward” SDE method, where solutions of diffusion
equations are represented by the mean value of a functional
of trajectories of a stochastie process [Freidlin, 1985]. This
is the method used in our current SDE code. Comparcd with
the time-forward method, the time-backward method is
more efficient when solutions on fewer points are of
interest, and it is better for handling a variety of boundary
conditions.

[10] To introduee the time-backward SDE method, let us
first consider a d-dimensional diffusion equation written as

I & »f
T UZI an(t'x)—&viO.xy (t.x)

- of
+ Dbt )5 (%) + et x)f (1,x), )
i=1 1

with initial and Dirichlet boundary conditions

S(0.x) = go(x), x€D, (3)

fx)=g(r.x), x€dD. {4)
Here D is the domain of the problem with boundary dD, and
2100, x) = go(x) on OD. Note that 3D is not restrieted to
constant coordinate surfaces in the SDE method [Freidlin,
1985].

[11] The solution f(x, ) of equation (2) is rclatcd to thc
following d-dimensional stoehastie proeess:

dX(s) =b(t —5,X)ds + ot — 5,X)dW(s), 0 <s<t, (5)
where X(s = 0) = x and W(s) is a d-dimensional Wiener
proeess. Here the d x d matrix o is defined by oo’ = a.
Note that o is not uniquely determined by this cquation, but
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according to Levy’s theorem [Zhang, 1999; Freidiin, 1985],
diffcrent choiees of o gencratc cquivalent stochastic
proccsses that yield the same solution of the diffusion
cquation (2). Also, note that equation (5) is a time-backward
SDE: at s = 0, we evaluate b and o at time ¢, whilc at s = ¢,
wc cvaluatc b and o at time zcro. The solution f'(x, ¢) is then
represented by the stochastic process defined in equation (5)
as

S(x.1) = E(F), (6)

whcre E denotes the expeetation value and F, is defined by

g“(x'x l) exp(Ylj I)‘ T2
Fx = (7)

gl (I_T‘x!_\ T) exp(ylx r)‘ T<l’
where 7 has the valuc of s when the stochastic process X(s)
cxits from the boundary JD for the first time and Y(s) is
defined by

Y(s) = /0‘(’(1 — r, X(r))dr. (8)

[12] Numcrical calculation of f ean bc constructed easily
from equations (6) (8). To obtain f(x, ), we sample a
numbcr of trajectories of the stochastic process defincd by
cquation (5) starting from x and s = 0, using a Monte Carlo
technique. The simulation of a trajectory will stop either by
reaching the initial condition at s = ¢ (where time = 0) or by
reaching the boundary of thc domain D at s = 7, whichever
comes first, and returns a value dcfined by cquation (7).
Then we usc the average of values rctumcd by all trajecto-
rics to approximate f(x, ¢). This proeess is repeated if we
want to calculate f at other points.

[13] Now let us also considcr a particular type of
Ncumann boundary condition that is commonly cncoun-
tered in radiation belt diffusion equations:

Vf-n=0. xeab, (9)
where V= (9f1dx", Of/0<,. . ., Of/0x?), the boundary 9D
is the part of dD with the Neumann condition, and n is the
inward unit normal veetor on J;D. General methods for
implementing Neumann boundary conditions in SDE solu-
tions are given by Freidlin {1985] and Costantini et al.
[1998]; here we simply note that condition (9) ean be
enforced in our numerical calculation of f(x, ) as follows:
Every time a trajectory reaches thc Neumann boundary d,D,
we immediately refleet it about the normal veetor n [Bossy et
al., 2004]. This trajectory will later be stopped by either
rcaching the initial condition or a Dirichlet boundary, and at
that time the trajeetory rcturns a valuc dcfined by cquation (7).

3. Application

[14] Inthis section, we apply thc above (see seetion 2) SDE
method to a bounce-avcraged pitch angle and encrgy diffu-
sion cquation [A/bert, 2004]. In section 3.1 wc derive the
stochastie process used to solve the diffusion cquation. In
seetion 3.2 fluxes calculated using the SDE codc are com-
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pared with rcsults from Albert and Young [2005] to show that
the SDE codc is eapable of solving thc diffusion cquation
with off-diagonal diffusion cocfficicnts. To show the cffect of
diffusion cocfficients with thc parallel propagation approxi-
mation [Summers, 2005] on particle fluxes, we solve the
diffusion cquation using thesc diffusion cocfficicnts and in
section 3.3 the results arc compared with those obtained from
fully caleulated cocfficicnts.

3.1. Application to Pitch Angle and Energy
Diffusion Equations

[15] Wc apply thc above SDE mcthod to the bounec-
averaged pitch angle and energy diffusion equation written
in equatorial pitch angle and momentum (g, p)

a 1 a 1 of af

t)_t = G_[)%G(D”ﬂ"ﬂ — + D, )
1 0
Gap

;000 A %
1 of 7/
G(Dﬂupl—)% + Df’f’ %) y

where D000, Daop, and D, arc bounce-averaged piteh
angle, mixed, and momentum diffusion coeffieients [Albert,
2004]. Here G is a Jacobian factor, G = p2 Tavg) sinag) cos{ ),
and T{ag) = 1.30 — 0.56 sin(cy) is the normalized bounce
period. Initial and boundary conditions are choscn to be the
same as from Albert and Young [2005]. Thus, the initial flux
is j(t = 0) = cxp[—(E — 0.2)/0.1][sin(ay) — sin(ag;)], where
the loss cone angle ap, = 5° and flux j is related to phase
space density f by j =f/p®. Boundary conditions arc

(10)

i — (1)
)

el =i (12)
Jdag o= 90"

Se-e, = 0. (13)

Sgag,= Kt =0)gue_ /P, (14)

where Epin = 0.2 MeV, Ena = 5 MeV, and pg,, is the
momentum eorresponding to E.;, [Albert and Young,
2005].

[16] To solve the equation using the time-backward SDE
method, we first writc cquation (10) in thc form of (2):

Y _ Duwas & Doy Ff &

o P 0al p 0000p+ " opt
o o
+b,.na—n0+bpn—p.

(15)
with

htm (l' Oo,p)

[ & [GDye) 1 8 (GDyy,
il b | =il (16)
Gp Oag 2

G d_p P

1 0 1 0
G_,,R(GD"W’) + = = (GDyp).

(17
G % (17)

bp(l‘ ﬁ()vl))
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Figure 1. D,o.0/p*, D,,/p*, and |D,,|/p*: inverse time
seales in units of s~ from diffusion eoefficients of Albert
and Young [2005]. Also shown is the sign of the eross
diffusion coefficients.(Reprinted from Albert and Young
[2005].)

Thus, the two-dimensional stochastie proeess defined in
equation (5) beeomes

dAo(S)=ba°(I—S,A0.P)dS+O'||dW| + o dWs. (18)

dP(s) pr(t—S,Ao,P)dS+0'2| dW, + o1 dW,, (19)
with Ay(s=0) = o and P(s=0) = p. Then, because of the
Ncumann boundary condition at ag = 90°, we numerically
refleet Ay with respeet to o = 90° if it is larger than 90°.
Here components of the matrix o are defined by

onon||onoz 2Duya0 /P 2Daop /P
— ; (20)
021022 o202 2Dup/p 2Dy

[17] In this work, we choose o, = 0 for simplieity and
then the other componcnts are

gy = \/2Duonn/p' (2])

021 = V2Dagp/ v/Dagoa: (22)
02 = m 2 )

where we have used the fact that D,q.0 1s never zero in
equation (22).

[18] We have developed a 2-D SDE code to solve the
diffusion equation (10) where SDEs (18) and (19) are
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integrated using the Euler-Maruyama method [Kloeden
and Platen, 1992]:

AO(er-l) = Ao(S,,) Gl bna [t S S,,,Ao(s,.)q P(S,,)] As

+ 011 (s0) AWy + 012(s50) AW (24)
P(S,,+]) = P(sn) at bp[l - sll'Ao(s’l)‘P(S")} As
+ 021 (sn) AW + 022(50) AW (25)

Here AW = /5,11 — s, N(O, 1), where N(0, 1) is a standard
Gaussian random number with zcro mean and unit varianee
generated using the Box-Muller algorithm [Press et al.,
2002]. Beeause the original time-backward SDE method
requires fresh samples of trajectories for every different (v,
p) and traces trajectories back to the initial condition or to a
boundary every timc, the current SDE eode is less cfficicnt
when solutions on many grid points for long times are
needed. Improving the efficiency of the SDE eode is onc of
tasks in our futurc work. In this work, we mainly want to
show that the method ean be used to solve multidimensional
diffusion equations. Results from the SDE eode are eompared
with those of Albert and Young [2005] in seetion 3.2,

3.2. Comparisons With Results of
Albert and Young {2005]

[19] Albert and Young [2005] solve the diffusion
equation (10) by first transforming to new coordinates
which diagonalize the diffusion tensor and then applying
standard finite difference methods to the transformed diffu-
sion equation. The bounee-averaged diffusion coeffieients
D 4000, Dagp, and D, for storm time chorus waves were
calculated at L = 4.5, with computational methods of Albert
[2005]. The wave model used to calculate diffusion eoef-
ficients 1s described by Horne et al. [2005] and Albert and
Young [2005); the wave magnetic field is given by BZ =
Bz(w)gw(tan()), where the wave power spectral density
B*(w) and the wave normal angle (tanf) distribution fune-
tion g, (tanf) are truneated Gaussian funections defined
betwecn lower and upper frequeney eutoffs (w; ¢ < w <
wyc) and wave normal angle cutoffs (8, < 8 < 8y¢). The
latitudinal distribution of thc waves and the ratio of eleetron
plasma frequeney (f,.) to eleetron eyelotron frequency (f..)
are the same as thosc uscd by Horne et al. [2005] and Albert
and Young [2005] and are shown in Table 1. Similar models
wcre used by Li et al. [2007]. Up to n = £S5 rcsonancc
harmonies were ineluded in the ealeulation. The calculated
diffusion eoefficients D,,o,0 are proportional to (pAag)’ /
At, as from Lyons [1974a, 1974b] and are divided by p” to
give the inverse time seales plotted in Figure 1.

[20] Using the above diffusion coefficicnts in cquation (10),
we obtain fluxes for £ = 0.5 MeV and 2.0 MeV eleetrons
with y ranging from 6° to 88° with 1° spaeing at r = 0.1
and 1 day. We have sampled N = 9000 trajectories at each
oy for £ = 0.5 MeV and N = 18000 trajectories for £ =
2.0 MeV with dr = 0.0004 day. The chosen dr gives small
relative change in « and E per step, compared with seales
of the diffusion eoeffieients and initial phase space density.
Our choiees of N and df might not be optimal, and ehoosing
N adaptively is probably better (G. Cunningham, personal
eommunieation, 2007). Results from the SDE eode are
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Table 1. Latitudinal Distribution of the Waves and f,./f.. of the
Wave Model [Horne et al., 2005] Used to Calculate Diffusion
Coefficients

Local Time Scctor
23000600 MLT 0600-1200 MLT 1200-1500 MLT

Jpelfce ~341t025 ~3.0t0 0.9 ~59t0 1.4
Latitudinal range 0° to 15° 15° to 35° 10° to 35°

comparcd with those of Albert and Young [2005]. Figure 2
shows thc comparisons for £ = 0.5 MeV electrons (Figure 2,
top) and £ = 2.0 MeV elcctrons (Figure 2, bottom), with
results from thc SDE method smoothed using a six-point
moving window avcrage in o With Ay = 1°. Within small
numerical errors associated with cach of the methods, the
two scts of rcsults are in excellent agreement, and they
demonstrate that our SDE eode is able to suceessfully solve
thc bounee-averaged pitch angle and energy diffusion
equation.

[21] To show the effeets of ignoring off-diagonal terms on
changc of flux, we rerun the SDE code, setting off-diagonal
diffusion cocfficients to zero. Results are shown in Figure 3

TAO ET AL.: RADIATION BELT STOCHASTIC MODELING
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Figure 2. Comparisons between results obtained from the
SDE method (solid lines) and the Albert and Young [2005]
method (dashed lines) for (top) £ = 0.5 MeV and (bottom)
E =2.0MeVatt=0.l day (blue lines) and ¢t = 1 day (red
lines). Here black lines show the initial condition.
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for 0.5 MeV (Figure 3, top) and 2 MeV (Figure 3, bottom)
eleetrons. From Figurc 3 we scc that for 0.5 McV elcctrons,
while there is a relatively small effeet at large pitch angles,
ignoring off-diagonal terms ovcrestimates electron fluxcs at
small pitch anglcs by a factor of 2 to ~5 at ¢ = 1 day. For
2 MeV electrons, ignoring off-diagonal terms ovcrestimates
fluxes by a factor of 5 to ~10 at ¢ = 1 day, with larger crrors
at smaller pitch angles. Thus, off-diagonal terms arc morc
important for 2 MeV electrons. We emphasizc that these
rcsults are for the Horne et al. [2005] wave model, and wc
note that the peak in flux of 2 McV electrons necar 30° may
be related to the cutoff in wave power at 35° latitude in the
Horne et al. [2005] model (scc discussion in scction 4).

3.3. Effects of Parallel Propagation Approximation

[22] Summers [2005] and Summers et al. [2007a, 2007b]
have derived eyclotron resonancc diffusion cocfficicnts for
field-aligned waves, where only the n = —1 resonanee is
ineluded (heneeforth denoted by D'y. This assumption of
parallel propagation greatly |mproves the computation
cfficiency. Bounce-avcraged D' are given and comparcd
with diffusion coefficicnts obtained from the PADIE eode

1.000F . ' T [
)
‘€
2 0.100¢
fa o
2
g
S
.—~ 0.010F
x L
2
0.001 . . A .
0 20 40 60 80
Equatoarial pitch angle a, (degrees)
100 T T T T
= 107
'c
=)
2 107'F
2
.‘é
S 107%+
3
S 107
107" . . . .
0 20 40 60 80

Equotoarial pitch ongle a, (degrees)

Figure 3. Fluxes for (top) £ = 0.5 MeV and (bottom) E =
2.0 MeV at ¢ = 0.1 day (blue lines) and ¢ = 1 day (red lines)
with and without off-diagonal diffusion terms. Dashed lines
are results without off-diagonal diffusion eoefficients, and
solid lines are results with off-diagonal terms.
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Figure 4. Same as Figure 1, except that diffusion
coefficients are calculated with the parallel propagation
approximation.

[Glauert and Horne, 2005] by Shprtts et al. [2006]. In thc
present work, we also calculate D! using the methods of
Albert [2005] with the same wave parameters as the wave
model described in section 3.2, except that 8¢ = fyc = 0.
The resulting diffusion coefficients are thc same as those
obtained from the PADIE code and are half of those given
by Summers et al. [2007a] (this factor of 2 diffcrence is
discussed by Albert [2007]).

[23] Figure 4 shows inversc time scales from diffusion
coefficients with the parallel wave approximation. Com-
pared with Figure 1, wc sec that the general behavior of D!
i1s quite good, with larger differences for E > 1 MeV
electrons. The off-diagonal terms of D" arc worsc
approximations than the diagonal terms, with details
discussed by Albert [2007].

[24] To comparc cffccts of D! with fully calculated
diffusion coefficicnts D, we solve equation (10) for 0.5 MeV
and 2 MeV electrons usmg the following four sets of
diffusion coefficicnts: (1) D (2) diagonal tcrms of D!
(hereinafter referred to as D ), (3)D and (4) diagonal tcrms
of D (hereinafter rcfcrred to as D). Results arc shown in
Figures 5—7.

[25] Figure 5 (to?) shows the comparison between fluxes
calculated using D)} and D, for 0.5 MeV electrons. We see
that results from D) agree very well with D,, with slight
differences for o, greater than about 40°. Figure 5 (bottom)
shows the same comparison for 2 0 MeV electrons from
which we see that the flux from Dd is smaller than that from
D, by up to ~5 orders of magnitude at low ay (<15°) at ¢ =
1 day. This behavior occurs because D!} underestimates
energy diffusion coefficients for high-energy particles at
small pitch angles, where n # —l resonanccs also make a
significant contribution. Thus, DY produces larger differ-
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ences in fluxes for 2 MeV electrons than 0.5 MeV at small
ap compared with D,,.

[26] Flgurc 6 shows comparisons bctween fluxes calcu-
lated using D} and D for 0.5 MeV clcctrons (Figurc 6, top)
and 2 MeV electrons (Flgure 6, bottom). Figurc 6 (top)
shows that D)) overestimates increase of flux at small prtch
angles for 0.5 MeV electrons, which 1s expected, because Dl
yields very similar flux increases as D, for 0.5 McV
elcctrons. For 2.0 MeV electrons, fluxes from Dd are smallcr
than that from D for o < 18° and larger for g 2 18° at t =
1 day (whcre the difference can be about 1-2 orders of
magnitude).

[27] Fluxes calculated from D! and D (i.c., with off-
diagonal terms included) for 0.5 MeV and 2 MeV electrons
are shown in Figure 7 (top) and Figure 7 (bottom)
respectwcly Reasonable agreement between D' and D
fluxes is obtained for g = 50°, but significant differences
occur at smaller pitch angles. For 0.5 MeV electrons, DI
underestimates incrcases of flux at + = 1 day by approxi-
mately an order of magmtude for cy < 20°. For 2.0 McV
electrons, behavior of D' is worse at 7 = 1 day We see from
Figure 7 (bottom) that D' underestimates increases of flux

1.000¢ T T g [
)
z e oo S e
2 0.100F =
o
2
:é'
)
-— 0.010F 3
x
2
0.001 A . . ,
0 20 40 60 80
Equatarial pitch angle a, (degrees)
100 T T T T
~ 107}
=
3
2 107 2
49.'4 [}
B '
o 10-5t_ ' "
S 1]
= B i T T T
2 10 ; i
107" : A : i
0 20 40 60 80

Equatarial pitch angle a, (degrees)

Figure 5. Comparisons between results obtained from
diffusion coefficients D, (dashed lines) and D, (solid lines)
for (top) £ = 0.5 McV and (bottom) £ = 2.0 MeV at 1 = 0.1
day (bluc lines) and ¢ = | day (red lines).
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Figure 6. Comparisons between results obtained from
diffusion coefficients Dj,' (dashed lines) and D (solid lines)
for (top) E = 0.5 MeV and (bottom) £ = 2.0 MeV at t =
0.1 day (blue lines) and ¢ = 1 day (red lines).

by ~ 1-4 orders of magnitude for 10° < o < 35°. Thus,
the approximation of parallel propagation produces larger
differences at small pitch angles for higher-energy particles,
especially when off-diagonal terms are included.

4. Summary and Discussion

[28] In this work a new code, based on the mathematical
thcory of exprcssing solutions of diffusion cquations in
tcrms of related stochastic processes, has been developed
for solving multidimensional radiation belt diffusion
cquations. Two examples are used to show its applications.

[29] First, we apply the SDE eode to a bounce-averaged
pitch angle and energy diffusion equation and obtain
exeellent agreement with a previously developed method
[Albert and Young, 2005]. We also confirm that ignoring
off-diagonal terms in the diffusion equation overestimates
inerease of flux, espeeially at small pitch anglcs, at £ = 1 day
(by a factor of 2 to ~5 for 0.5 MeV, and 5 to ~10 for 2 MeV
eleetrons) using the Albert and Young [2005] diffusion
coefficicnts.

[30] Seeond, by solving the bounee-avcraged pitch angle
and energy diffusion equation using fully calculated diffu-

A07212

sion coefficients D [4lbert and Young, 2005] and eoeffi-
cicnts with the parallel propagation approximation D!
[Summers, 2005; Summers et al., 2007a, 2007b], both
caleulated using the chorus wave model of Horne et al.
[2005], we show that diagonal diffusion coefficients of D!
agree well with those of D only for low-energy particles
(e.g., E=0.5 MeV). For high-energy cleetrons, the difference
between the diagonal terms of D' and D produces large
differenees in fluxes at some pitch angles (diffcrence of up
to 5 orders of magnitude for 2 MeV eleetrons at oy < 15°, at
t = 1 day). By including off-diagonal diffusion coeficients
in our calculation, we show that the off-diagonal terms of
D' can produce differences in fluxes of 4 orders of
magnitude for 2 MeV clectrons at =1 day. A diseussion
of the details of different diffusion coefficients and another
approximation for a full ealeulation of diffusion coefficients
are presented by Albert [2007].

[31] Note that the above conclusions on the magnitude
and location of diffcrences that occur by omitting off-
diagonal terms and assuming parallel propagating waves
are very likely to be dependent on the wave model used. For
example, a diffcrent latitudinal distribution of wave powcr
may result in different diffusion cocfficients and thus

1.000f T ' T T
)
i
3 0.100F
> :
S
5
&
= 0.010F
x F
=) [
0.001 2 L \ N N
o} 20 40 60 80
Equotariol pitch ongle a, (degrees)
100 T T T T
w 107 —
ic
3
> 107+
2
.‘é
S 10°%F
3
= 10°%
10 . . . L
0 20 40 60 80

Equotoriol pitch angie a, (degrees)

Figure 7. Comparisons between results obtained from
diffusion coefficients D! (dashed lines) and D (solid lines)
for (top) £ = 0.5 MeV and (bottom) £ = 2.0 MeV at ¢ =
0.1 day (blue lines) and ¢ =1 day (red lines).

7 of 9




A07212

4.0 — —

2.8

2.0

E (MeV)

1.0}

0.7 L

10 30 50 70 10 30 50 70
Equatorial pitch angle a;  Equatarial pitch angle a,

Figure Al. Local effects of ignoring off-diagonal terms.
Lines are contours of particle numbers. Particles are
released from o = 30° for £ = 1.0 MeV and o = 50° for
E = 3 McV. (left) Off-diagonal terms are kept. D,qp is
positive at ag = 30°, £ = 1.0 MeV and negative at ay = 50°,
E =3 MeV. (right) Off-diagonal terms are set to zero.

different conclusions. The scnsitivity of our results to wave
models needs further study. However, before such work is
done, it is safer to include both off-diagonal terms and
oblique waves in calculations of electron flux.

[32] The SDE method is less efficient when solutions on
many grid points are desired. However, when parallel
computers are available, computation time ean be greatly
reduced because of high parallelization efficiency. General-
ization to 3-D including pitch angle, energy, and radial
diffusion is straightforward. The SDE method is very
promising for providing ncw insights into the relative roles
of local acccleration and radial diffusion as acceleration
mcchanisms and the importance of pitch angle diffusion as a
loss process.

Appendix A: Time-Forward SDE Method

[33] To use the time-forward SDE method, we first set
F = Gf and write the bounce-averaged pitch angle and
energy diffusion equation (10) in the following form:

2
a_F 62 (Dnollo F) =1 2 a (Duolf F)

o dai \ p? dagdp \ p
s i 9
g (D) = oz (BaoF) = % (b,F), (A1)

where b, and b, are defined in equations (16) and (17).
Thus, the time-forward stochastic differential equations
corresponding to equation (Al) are [ Alanko-Huotari et al.,
2007; Yamada et al., 1998; Qin et al., 2005]

dAo(t) = bﬂo(t.A().P) dt+ oy dW) + o, dWs. (AZ)

(I'P(l) =b,,(l,A(),P)dl+02|dW] + o3 dW3, (A3)

where components of the matrix o are also defined by
equations (21)-(23).
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[34] Equations (A2) and (A3) are solved to give changes
of particle coordinates (g, p). Thus, after a given time
period, the distribution of electrons can be obtained. Here
we choose a time period short cnough to ignore boundary
effects. To explore local effeets of off-diagonal diffusion
coefficients on distributions of particles, we release 9000
particles from a = 30°, E = 1 McV, where D, is positive,
and oy = 50°, E = 3 MeV, where D,,q,, is negative. We obtain
the distribution of particlcs shown in Figure Al after 1= 0.06
day for E=3 MeVand t = 0.01 day for £E= 1 McV. Wc also
turned off-diagonal diffusion coefficients on and off to show
local effects of ignoring off-diagonal terms. Figure Al (left)
has D, # 0, and Figure Al (right) has D,q, = 0. We sce
from Figure Al that without Do, , the local distribution of
particles has a shape of an cllipse, while with D, this
ellipse is tilted, and thc tilt direction i1s determincd by the
sign of D, With D, positive (as for the ag = 30°, £ =1
MeV easc) the ellipse tilts clockwise, and with D,,q, ncgative
(ag = 50°, E = 3 MeV), the cllipse tilts countcrclockwise.
These results are consistent with previous analytical results
using Green functions [Albert and Young, 2005].
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